Node having maximum sum of immediate children and itself in n-ary tree

Given an N-Ary tree, find and return the node for which sum of data of all children and the node itself is maximum. In the sum, data of node itself and data of its immediate children is to be taken.

For example in the given tree,

maxSum Node = 4 with maximum sum of 28

The idea is we will maintain a integer variable maxsum which contains the maximum sum yet, and a resnode node pointer which points to the node with maximum sum.
Traverse the tree and maintain the sum of root and data of all its immediate children in currsum
integer variable and update the maxsum variable accordingly.

`// CPP program to find the node whose children`
`// and node sum is maximum.`
`#include <bits/stdc++.h>`
`using` `namespace` `std;`
`// Structure of a node of an n-ary tree`
`struct` `Node {`
`    ``int` `key;`
`    ``vector<Node*> child;`
`};`
`// Utility function to create a new tree node`
`Node* newNode(``int` `key)`
`{`
`    ``Node* temp = ``new` `Node;`
`    ``temp->key = key;`
`    ``return` `temp;`
`}`
`// Helper function to find the node`
`void` `maxSumUtil(Node* root, Node** resNode,`
`                ``int``* maxsum)`
`{`
`    ``// Base Case`
`    ``if` `(root == NULL)`
`        ``return``;`
`    ``// curr contains the sum of the root and `
`    ``// its children`
`    ``int` `currsum = root->key;`
`    ``// total no of children`
`    ``int` `count = root->child.size();`
`    ``// for every child call recursively`
`    ``for` `(``int` `i = 0; i < count; i++) {`
`        ``currsum += root->child[i]->key;`
`        ``maxSumUtil(root->child[i], resNode, maxsum);`
`    ``}`
`    ``// if curr is greater than sum, update it`
`    ``if` `(currsum > *maxsum) {`
`        ``// resultant node`
`        ``*resNode = root;`
`        ``*maxsum = currsum;`
`    ``}`
`    ``return``;`
`}`
`// Function to find the node having max sum of `
`// children and node`
`int` `maxSum(Node* root)`
`{`
`    ``// resultant node with max sum of children`
`    ``// and node`
`    ``Node* resNode;`
`    ``// sum of node and its children`
`    ``int` `maxsum = 0;`
`    ``maxSumUtil(root, &resNode, &maxsum);`
`    ``// return the key of resultant node`
`    ``return` `resNode->key;`
`}`
`// Driver program`
`int` `main()`
`{`
`    ``/*   Let us create below tree`
`    ``*              1`
`    ``*          /   |  \`
`    ``*         2   3   4`
`    ``*        / \    / |  \`
`    ``*       5   6  7  8  9`
`    ``*/`
`    ``Node* root = newNode(1);`
`    ``(root->child).push_back(newNode(2));`
`    ``(root->child).push_back(newNode(3));`
`    ``(root->child).push_back(newNode(4));`
`    ``(root->child[0]->child).push_back(newNode(5));`
`    ``(root->child[0]->child).push_back(newNode(6));`
`    ``(root->child[2]->child).push_back(newNode(5));`
`    ``(root->child[2]->child).push_back(newNode(6));`
`    ``(root->child[2]->child).push_back(newNode(6));`
`    ``cout << maxSum(root) << endl;`
`    ``return` `0;`
`}`

Output:

```4

```

Disclaimer: This does not belong to TechCodeBit, its an article taken from the below
source and credits.
source and credits: http://www.geeksforgeeks.org
We have built the accelerating growth-oriented website for budding engineers and aspiring job holders of technology companies such as Google, Facebook, and Amazon
If you would like to study our free courses you can join us at